Blown Film Extrusion Introduction

Blown Film Extrusion Introduction

Blown Film Extrusion Introduction
Blown film extrusion is a technology that is the most common method to make plastic films, especially for the packaging industry. The process involves extruding a tube of molten polymer through a die and inflating to several times its initial diameter to form a thin film bubble. This bubble is then collapsed and used as a lay-flat film or can be made into bags. Usually polyethylene is used with this process, and other materials can be used as blends with these polymers. A diagram of a polyethylene chain is shown in Figure 1 to the right.
Background Theory on Polymers

In the cooling step of blown film extrusion, the amorphous, transparent melt crystallizes to form a translucent, hazy, or opaque film. The point where opacity begins in the bubble is known as the frost line. 
Fig 1: Model of polytheylene chain frompolyethylene Wikipedia article.The frost line height is controlled by several parameters: the air flow, film speed, and temperature difference between the film and the surroundings. Properties of the film, such as tensile strength, flexural strength, toughness, and optical properties, drastically change depending on the orientation of the molecules. As the transverse or hoop direction properties increase, the machine or longitudinal direction properties decrease. For instance, if all the molecules were aligned in the machine direction, it would be easy to tear the film in that direction, and very difficult in the transverse direction.

The Film Blowing machine Process

Fig 2: Schematic of set-up from User:J.Chiang.

Typically, blown film extrusion is carried out vertically upwards, however horizontal and downward extrusion processes are now becoming more common. Figure 2 shows a schematic of the set-up for blown film extrusion. This procedure consists of four main steps: The polymer material starts in a pellet form, which are successively compacted and melted to form a continuous, viscous liquid. This molten plastic is then forced, or extruded, through an annular die. Air is injected through a hole in the center of the die, and the pressure causes the extruded melt to expand into a bubble. The air entering the bubble replaces air leaving it, so that even and constant pressure is maintained to ensure uniform thickness of the film. The bubble is pulled continually upwards from the die and a cooling ring blows air onto the film. The film can also be cooled from the inside using internal bubble cooling. This reduces the temperature inside the bubble, while maintaining the bubble diameter. After solidification at the frost line, the film moves into a set of nip rollers which collapse the bubble and flatten it into two flat film layers. The puller rolls pull the film onto windup rollers. The film passes through idler rolls during this process to ensure that there is uniform tension in the film. Between the nip rollers and the windup rollers, the film may pass through a treatment centre, depending on the application. During this stage, the film may be slit to form one or two Read More

Read Me